• Aleksandar Dimkov Department of Paediatric and Preventive Dentistry, Faculty of Dental Medicine, University “Ss Cyril and Methodius”, Skopje, North Macedonia https://orcid.org/0000-0002-5627-2510




Dental Resin Composite, Antibacterial Agents, Antibacterial Strategies, Caries prevention


Because of the high frequency of recurrent caries following composite resin restorative treatment, as well as the large number of cariogenic microorganisms present in the oral cavity, which represent a potential risk factor for the development of new carious lesions, the antimicrobial effects of composite resins are receiving increasing attention. Recently, attempts have been made to include specific antimicrobial compounds in restorative materials, mainly GJCs and composites, in addition to fluorides. Conventional composites’ lack of antibacterial qualities implies a lack of an inhibitory impact against plaque accumulation on their surface, allowing bacteria such as mutans streptococci to grow freely. As a result, the antibacterial properties of dental resin composites are crucial to their therapeutic applications. The present study demonstrates the methods and possibilities for incorporating antimicrobial chemicals, both leachable and non-leachable, into the resin matrix or filler of composite resins.


Download data is not yet available.


Alansy AS, Saeed TA, Guo Y, Yang Y, Liu B, Fan Z (2022). Antibacterial Dental Resin Composites: A Narrative Review. Open Journal of Stomatology, 12, 147-165.

Apel C, Barg A, Rheinberg A, Conrads G, Wagner-Döbler I. (2013). Dental composite materials containing carolacton inhibit biofilm growth of Streptococcus mutans. Dent Mater, 29(11),1188-99. doi: 10.1016/j.dental.2013.09.005. Epub 2013 Oct 4. PMID: 24094824.

Bai X, Lin C, Wang Y, Ma J, Wang X, Yao X, Tang B. (2020). Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent Mater, 36(6), 794-807. doi: 10.1016/j.dental.2020.03.026. Epub 2020 Apr 27. PMID: 32349876..

Balhaddad AA, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. (2020). Concentration dependence of quaternary ammonium monomer on the design of high-performance bioactive composite for root caries restorations. Dent Mater, 36(8), e266-e278. doi: 10.1016/j.dental.2020.05.009. Epub 2020 Jun 8. PMID: 32527499.

Bhadila G, Filemban H, Wang X, Melo MAS, Arola DD, Tay FR, Oates TW, Weir MD, Sun J, Xu HHK. (2020). Bioactive low-shrinkage-stress nanocomposite suppresses S. mutans biofilm and preserves tooth dentin hardness. Acta Biomater, 15;114, 146-157. doi: 10.1016/j.actbio.2020.07.057. Epub 2020 Aug 6. PMID: 32771591.

Bhadila G, Menon D, Wang X, Vila T, Melo MAS, Montaner S, Arola DD, Weir MD, Sun J, Hockin H K, Xu. (2021). Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. J Biomater Sci Polym Ed, 32(7), 886-905. doi: 10.1080/09205063.2021.1878805. Epub 2021 Feb 9. PMID: 33482702.

Boaro LCC, Campos LM, Varca GHC, Dos Santos TMR, Marques PA, Sugii MM, Saldanha NR, Cogo-Müller K, Brandt WC, Braga RR, Parra DF. (2019). Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater, 35(6), 909-918. doi: 10.1016/j.dental.2019.03.004. Epub 2019 Apr 5. PMID: 30955856.

Chen H, Wang R, Zhang J, Hua H, Zhu M. (2018). Synthesis of core-shell structured ZnO@m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent Mater, 34(12), 1846-1855. doi: 10.1016/j.dental.2018.10.002. Epub 2018 Oct 25. PMID: 30482610.

Chen L, Suh BI, Yang J. (2018). Antibacterial dental restorative materials: A review. Am J Dent, 15;31(Sp Is B),6B-12B. PMID: 31099206.

Chrószcz MW, Barszczewska-Rybarek IM, Kazek-Kęsik A. (2022). Novel Antibacterial Copolymers Based on Quaternary Ammonium Urethane-Dimethacrylate Analogues and Triethylene Glycol Dimethacrylate. Int J Mol Sci, 29;23(9), 4954. doi: 10.3390/ijms23094954. PMID: 35563344; PMCID: PMC9103508.

Clarin A, Ho D, Soong J, Looi C, Ipe DS, Tadakamadla SK. (2021). The Antibacterial and Remineralizing Effects of Biomaterials Combined with DMAHDM Nanocomposite: A Systematic Review. Materials (Basel), 30;14(7) 1688. doi: 10.3390/ma14071688. PMID: 33808198; PMCID: PMC8037094.

Colton MB, Ehrlich E. (1953). Bactericidal effect obtained by addition of antibiotics to dental cements and direct filling resins. J Am Dent Assoc, 47(5),524-31. doi: 10.14219/jada.archive.1953.0206. PMID: 13108496.

Dias HB, Bernardi MIB, Bauab TM, Hernandes AC, de Souza Rastelli AN. (2019). Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent Mater, 35(2), e36-e46. doi: 10.1016/j.dental.2018.11.002. Epub 2018 Dec 7. PMID: 30528295.

Featherstone JDB. (2022). Dental restorative materials containing quaternary ammonium compounds have sustained antibacterial action. J Am Dent Assoc, 153(12),1114-1120. doi: 10.1016/j.adaj.2022.09.006. Epub 2022 Oct 20. PMID: 36272816.

Hwang G, Koltisko B, Jin X, Koo H. (2017). Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal. ACS Appl Mater Interfaces, 8;9(44), 38270-38280. doi: 10.1021/acsami.7b11558. Epub 2017 Oct 25. PMID: 29020439.

Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. (2016). Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 32(1), 73-81. doi: 10.1016/j.dental.2015.10.007. Epub 2015 Nov 24. PMID: 26621028; PMCID: PMC4696903.

Liang X, Söderling E, Liu F, He J, Lassila LV, Vallittu PK. (2014). Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med, 25(5), 1387-93. doi: 10.1007/s10856-014-5156-x. Epub 2014 Jan 22. PMID: 24449028.

Pinto DS. Resin-based biomaterials with antibacterial activity. (2019). Master’s Degree in Dental Medicine. Faculdade de medicina dentaria, Universidade do Porto.

Rechmann P, Le CQ, Chaffee BW, Rechmann BMT. (2021). Demineralization prevention with a new antibacterial restorative composite containing QASi nanoparticles: an in situ study. Clin Oral Investig, 25(9), 293-5305. doi: 10.1007/s00784-021-03837-4. Epub 2021 Feb 19. PMID: 33608748; PMCID: PMC7895509.

Ren J, Guo X. (2023). The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon, 22;9(9), e19078. doi: 10.1016/j.heliyon.2023.e19078. PMID: 37662807; PMCID: PMC10474440.

Shvero DK, Zatlsman N, Hazan R, Weiss EI, Beyth N. (2015). Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. J Dent, 43(2), 287-94. doi: 10.1016/j.jdent.2014.05.003. Epub 2014 May 29. PMID: 24881908.

Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, Chladek G. (2018). Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. Materials (Basel), 18;11(6), 1031. doi: 10.3390/ma11061031. Erratum in: Materials (Basel). 2018 Nov 02;11(11): PMID: 29912158; PMCID: PMC6025467.

Stenhagen ISR, Rukke HV, Dragland IS, Kopperud HM. (2019). Effect of methacrylated chitosan incorporated in experimental composite and adhesive on mechanical properties and biofilm formation. Eur J Oral Sci, 127(1), 81-88. doi: 10.1111/eos.12584. Epub 2018 Nov 9. PMID: 30412313.

Stewart CA, Finer Y, Hatton BD. (2018). Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci Rep, 17;8(1), 895. doi: 10.1038/s41598-018-19166-8. PMID: 29343729; PMCID: PMC5772632.

Sun Q, Zhang L, Bai R, Zhuang Z, Zhang Y, Yu T, Peng L, Xin T, Chen S, Han B. (2012). Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers (Basel), 13(10),1590. doi: 10.3390/polym13101590. PMID: 34069312; PMCID: PMC8156482.

Wang J, Xue J, Dong X, Yu Q, Baker SN, Wang M, Huang H. (2020). Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent. Int J Pharm, 15;575, 119005. doi: 10.1016/j.ijpharm.2019.119005. Epub 2019 Dec 30. PMID: 31899317.

Wang L, Hu C, Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine, 14;12, 1227-1249. doi: 10.2147/IJN.S121956. PMID: 28243086; PMCID: PMC5317269.

Wang Y, Zhu M, Zhu XX. (2020). Functional fillers for dental resin composites. Acta Biomater, 122,50-65. doi: 10.1016/j.actbio.2020.12.001. Epub 2020 Dec 5. PMID: 33290913.

Xue J, Wang J, Feng D, Huang H, Wang M. (2020). Application of Antimicrobial Polymers in the Development of Dental Resin Composite. Molecules. 15;25(20),4738. doi: 10.3390/molecules25204738. PMID: 33076515; PMCID: PMC7587579.

Yamamoto, E.; Kuroda, K. (2016). Colloidal Mesoporous Silica Nanoparticles. B Chem. Soc. Jpn, 89, 501–539

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine, 15, 2555-2562. doi: 10.2147/IJN.S246764. PMID: 32368040; PMCID: PMC7174845.

Zhang M, Wei W, Sun Y, Jiang X, Ying X, Tao R, Ni L. (2016). Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch Oral Biol, 70:79-87. doi: 10.1016/j.archoralbio.2016.06.008. Epub 2016 Jun 8. PMID: 27341459.

Zhu H, Du M, Zou M, Xu C, Fu Y. (2012). Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Trans, 41(34),10465-71. doi: 10.1039/c2dt30998j. Epub 2012 Jul 20. PMID: 22821202.




How to Cite

Dimkov, A. . (2023). ON THE POSSIBILITIES AND STRATEGIES FOR INCORPORATION ANTIMICROBIAL AGENTS INTO RESIN COMPOSITE DENTAL MATERIALS – A NARRATIVE REVIEW. MEDIS – International Journal of Medical Sciences and Research, 2(4), 39–44. https://doi.org/10.35120/medisij020439d