MICROBIOLOGICAL ACTIVITY OF SILVER NANOPARTICLES STABILIZED WITH DEXTRAN DERIVATIVES

Authors

  • Slobodan Glišić Academy of professional studies South Serbia, Leskovac, Serbia
  • Momčilo Conić Academy of professional studies South Serbia, Leskovac, Serbia
  • Miodrag Šmelcerović Academy of professional studies South Serbia, Leskovac, Serbia

DOI:

https://doi.org/10.35120/medisij020101g

Keywords:

microbiological activity, silver nanoparticles, green synthesis, food industry

Abstract

The paper shows the microbiological activity of silver nanoparticles (AgNPs) stabilized with dextran derivatives with carbox-ymethyl dextran (CMD) and dextran sulfate (DS). Non-toxic, green procedures for the synthesis of AgNPs with CMD, DS were developed. The increasing application of silver nanoparticles in many areas, especially favors the so-called non-toxic, i.e. “green” synthesis procedures. Unlike physical and chemical synthetic methods, green synthesis has a number of advantages: lower energy consumption, simple execution, costs are reduced, use of non-toxic chemicals as reducing and stabilizing agents. Nanoparticles AgNPs-DS and AgNPs-CMD showed microbiological activity against the analyzed test microorgan-isms. Silver nanoparticles obtained in this way, due to their stability and preserved antimicrobial activity, can be widely used in various branches of industry. The results of testing the antimicrobial activity of synthesized nanoparticles from the technologi-cal aspects are important; these compounds have potential application in the biomedical field, and simple procedures have many advantages, such as low costs, compatibility for medical and pharmaceutical applications, as well as the production of other commercial products in the food industry.

Downloads

Download data is not yet available.

Author Biographies

Slobodan Glišić, Academy of professional studies South Serbia, Leskovac, Serbia

 

 

Momčilo Conić, Academy of professional studies South Serbia, Leskovac, Serbia

 

 

Miodrag Šmelcerović, Academy of professional studies South Serbia, Leskovac, Serbia

 

 

References

Amooaghaie, R., Saeri, M.R., & Azizi, M., (2015), Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and environmental safety, 120, 400-408.

Andrews, J.M., (2005), BSAC standardized disc susceptibility testing method. Journal of Antimicrobial Chemotherapy 56 pp. 60.

Armentano, I., Dottori M., Fortunati E., Mattioli S., Kenny J. M., (2010), Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polymer Degradation and Stability 95: 2126–46.

Bankura, K. P., Maity, D., Mollick, M. M., Mondal, D., Bhowmick, B., Bain, M. K., ... & Chattopadhyay, D., (2012), Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydrate polymers, 89(4), 1159-1165.

Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., & Misra, A., (2009), Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and surfaces A: Physicochemical and engineering aspects, 339(1), 134-139.

Barker, S.A., Bourne, E.J., Stacey, M., & Whiffen, D.H., (1953), Infra-red absorption spectra of dextran and other polygluco-sans. Chemistry & Industry, (9), 196-197.

Berry, C.C., Wells, S., Charles, S., Curtis, A.S.G., (2003), Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24: 4551-7.

Bhainsa, K.C., D’Souza S.F., (2006), Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surface B: Biointerfaces 47: 160-4.

Bhattacharya, R., Mukherjee, P., (2008), Biological properties of ‘‘naked’’ metal nanoparticles. Advanced Drug Delivery Re-views 60: 1289–306.

Cakić, M., Mitić, Ž., Nikolić, G. S., Ilić, L., & Nikolić, G. M., (2008), The investigations of bioactive copper(II) complexes with reduced low-molar dextran. Journal of Spectroscopy, 22(2-3), 177-185.

Cakić, M., Nikolić G., Cvetković D., Ilić Lj., Kompleksi Fe(III) sa oligosaharidima – antianemici. Naučna monografija, (Tehnološki fakultet, Leskovac, 2007).

Caswell, K.K., Bender, C.M., Murphy, C.J., (2003), Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters 3: 667-9.

Chairam, S., Poolperm, C., Somsook E., (2009), Starch vermicelli template assisted synthesis of size/shape-controlled nano-particles. Carbohydrate Polymers 75: 694–704.

Chairam, S., Somsook, E., (2008), Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters. Journal of Magnetism and Magnetic Materials 320(15): 2039–43.

Chaki, N.K., Sharma J., Mandle A. B.,. Mulla I. S, Pasricha R., Vijayamohanan K., (2004), Size dependent redox behavior of monolayer protected silver nanoparticles (2–7 nm) in aqueous medium. Physical Chemistry Chemical Physics 6: 1304-9.

Chen, D.H., Huang, Y.W., (2002), Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly(ethylene glycol). Journal of Colloid Interface Science, 255, 299-302.

Chudobova, D., Nejdl, L., Gumulec, J., Krystofova, O., Rodrigo, M. A. M., Kynicky, J., ... & Kizek, R. (2013b). Complexes of silver (I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. International journal of molecular sciences, 14(7), 13592-13614.

Cozzoli, P.D., Comparelli R., Fanizza E., Curri M.L., Agostiano A., Laub D., (2004), Photocatalytic synthesis of silver nanopar-ticles stabilized by tio2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society. 126(12):3868-79.

Đaković, Lj., (1985), Koloidna hemija, Tehnološki fakultet, Zavod za izdavanje udžbenika, Novi Sad.

Darwis, D., Stasica P., Razzak M.T., Rosiak J.M., (2002), Characterization of poly(vinyl alcohol) hydrogel for prosthetic inter-vertebral disc nucleus. Radiation Physics and Chemistry, 63: 539-42.

Delić, D., (2011), Toxicity of silver nanoparticles in duckweed (Lemna minor L.), Sveučilište u Zagrebu, 43.

Dhand, V., Soumya L., Bharadwaj S., Chakra S., Deepika B., Sreedhar B., (2016), Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity.” Materials science and engineering. C, 58, 36-43.

Faure, C., Derre A., Neri W., (2003), Spontaneous Formation of Silver Nanoparticles in Multilamellar Vesicles. Journal of Physical Chemistry B, 107: 4738-46.

Garza-Navarro, M.A., Aguirre-Rosales, J.A., Llanas-Vázquez, E.E., Moreno-Cortez, I.E., Torres-Castro, A., & González-González, V., (2013), Totally ecofriendly synthesis of silver nanoparticles from aqueous dissolutions of polysaccharides. International Journal of Polymer Science, 2013.

Guzman, M., Dille J., Godet S., (2012), Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine 8: 37–45.

Hamblin, MR & Jori G., (2011), Photodynamic inactivation of microbial pathogens: Medical and environmental applications, Hamblin MR, Jori G (Eds.), From series: Comprehensive Series in Photochemistry and Photobiology No. 11, The Royal Society of Chemistry, European Society for Photobiology, UK, ISBNs: 978-1-84973-144-7 (Hardback) & 978-1-84973-308-3 (Electronic).

Hamedi, S., Ghaseminezhad, S. M., Shojaosadati, S. A., & Shokrollahzadeh, S., (2012), Comparative study on silver nanoparticles properties produced by green methods, Iranian Journal of Biotechnology, 10(3), 191-197.

Horikoshi, S., Sorpone N., (2013), Microwaves in Nanoparticle Synthesis: Fundamentals and Applications 1. Introduction to Nanoparticles Published Online: 26 APR DOI: 10.1002/9783527648122.ch1

Hornebecq, V., Antonietti, M., Cardinal, T., Treguer-Delapierre, M., (2003), Stable silver nanoparticles immobilized in meso-porous silica. Chemistry of Materials, 15: 1993-99.

Jain, J., Arora, S., Rajwade, J. M., Omray, P., Khandelwal, S., Paknikar, K. M., (2009), Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular Pharmacology, 6(5):1388-401

Jain, P., Pradeep T., (2005), Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Bio-technology and Bioengineering, 90(1): 59-63.

Jiang, Z.J., Liu C.Y., Sun L.-W., (2005), Catalytic properties of silver nanoparticles supported on silica spheres. Journal of Physical Chemistry B, 109(5), 1730-5.

Johans, C., Clohessy, J., Fantini, S., Kontturi, K., Cunnane, V.J., (2004), Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid– liquid interface. Electrochemistry Communications, 4: 227-30.

Kentaro, M., Kotaro, K., (1974), Flange cover mounting structure; Int C1 Fi6B9/02, Appl. No 287 67; Jap. Pat 120 62A2 (2000) dop. JpP120 626

Knetsch, M.L.W, Koole, L.H., (2011), New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers 3(1): 340-66.

Komarneni, S., Li, D.S., Newalkar, B., Katsuki, H., Bhalla, A.S., (2002), Microwave-Polyol Process for Pt and Ag Nanoparti-cles. Langmuir 18: 5959-62.

Krstić, N.S., (2013), Study of the interaction of M(II) biometal ions in model systems with pharmaceuticals and supplements type acids as potential ligands. PhD Thesis. Faculty of Sciences and Mathematics Nish, Serbia.

Leopold, N., Lendl, B., (2003), A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry B., 107: 5723-27.

Lihui, X., Ruimin, Z., Gracien, E.B., Francis, A.O., (2004), Synthesis of silver nano-particles by EB irradiation. Journal of Ra-diation Research and Radiation Processing 22(2): 69-72.

Liu, C., Lu, J., Lu, L., Liu, Y., Wang, F., Xiao, M., (2010a), Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1, Bioresource Technology, 101, 5528–5533.

Liu, M., Yue, X. L., Dai, Z.F., Ma, Y., Xing, L., Zha, Z., Liu, S., Li, Y., (2009), Novel thrombo-resistant coating based on iron-polysaccharide complex multilayers, ACS Applied Materials & Interfaces, 1(1), 113-123.

Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun H., Tam, P.K.H., Chiu, J. F., Che C.M., (2006), Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5: 916-24.

Maillard, M., Giorgio, S., Pileni, M.P., (2002), Silver nanodisks. Advanced Materials 14(15): 1084-86.

Maillard, M., Giorgio, S., Pileni, M.P., (2003), Tuning the size of silver nanodisks with similar aspect ratios: Synthesis and optical properties. Journal of Physical Chemistry B, 107(11): 2466-70.

McFarland, A.D., Duyne, R.P.V., (2003), Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nanoletters, 3, 1057- 62.

Mitić, Ž., Nikolić, G. S., Cakić, M., Nikolić, R., & Ilić, L., (2007), Synthesis and spectroscopic characterization of copper (II)-dextran complexes. Russian Journal of Physical Chemistry A, 81(9), 1433-1437.

Mitić, Ž., Nikolić, G. S., Cakić, M., Premović, P., Ilić, Lj., (2009), FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives. Journal of Molecular Structure, 924, 264-273.

Mitić, Ž., Nikolić, G.S., Cakić, M., Development of ATR-FTIR Microspectroscopyc for Analysis of Bioactive Cooper(II)-Polysaccharide Complexes „Shedding Light of Diseanse“ Optical Diagnosis for the New Millennium, Conference SPEC 2008, (Sao Jose dos Campos, Sao Paulo, Brazil, 86-88, 2008).

Monteiro, D.R., Gorup, L.F., Takamiya, A.S., Ruvollo-Filho, A.C., Camargo, E.R., Barbos, D.B., (2009), The growing im-portance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Inter-national Journal of Antimicrobial Agents, 34: 103-10.

Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J., (2005), The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–53.

MubarakAli, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M., (2011), Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85(2), 360-365.

Nadagouda, M.N., & Varma, R.S., (2007), Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules, 8(9), 2762-2767.

Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., (2002), Biomimetic synthesis and patterning of silver nano-particles. Nature materials 1(3): 169-72.

Nikolić, G., (2001), Sinteza, fizičkohemijska svojstva i struktura kompleksa gvožđa (III) sa oligosaharidima, Doktorska disertacija, Tehnološki fakultet, Leskovac.

Nikolić, G.S., Cakić, M., Mitić, Ž., Ilić, B., & Premović, P., (2009), Attenuated total reflectance-fourier transform infrared microspectroscopy of copper (II) complexes with reduced dextran derivatives. Russian Journal of Physical Chemistry A, Focus on Chemistry, 83(9), 1520-1525.

Nikolić,G.S., Cakić, M., Mitić, Ž., & Ilić, Lj., (2008), Deconvoluted Fourier-transform LNT-IR study of coordination copper (II) compounds with dextran derivatives. Russian Journal of Coordination Chemistry, 34(5), 322-328.

Pal, S., Tak K.Y., Song M.J., (2007), Does the antibacterial activity of silver nanoparticles depend on the shape of the nano-particle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73: 1712–20.

Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupová, J., Kryštof, V., Hamal, P., Zbořil, R., Kvítek, L., (2009), Antifun-gal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333–40.

Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V.K., Nevĕčná, T., Zbořil R., (2006), Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B, 110: 16248-53.

Park, J. H., Im, K.H., Lee, S.H., Kim, D.H., Lee, D.Y., Lee, Y.K., Kim, K.M., Kim, K.N., (2005), Preparation and characteriza-tion of magnetic chitosan particles for hyperthermia application. Journal of Magnetism and Magnetic Materials 293: 328-33.

Prinz, E. M., Eggers, R., Lee, H.H., Steinfeld, U., & Hempelmann, R., (2010), Synthesis of drug loaded magnetic nanoparticles and their uptake into immune cells. In Journal of Physics: Conference Series 200(12) p. 122009). IOP Publishing.

Quelemes, P. V., Araruna, F.B., de Faria, B.E., Kuckelhaus, S.A., da Silva, D.A., Mendonça, R.Z., ... & Leite, J.R.S., (2013), Development and antibacterial activity of cashew gum-based silver nanoparticles. International journal of molecular sciences, 14(3), 4969-4981.

Radzig, M.A., Nadtochenko, V.A., Koksharova, O.A., Kiwi, J., Lipasova, V.A., Khmela, I.A., (2013), Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces B: Biointerfaces 102: 300–6.

Ramsten, J.J., (2014), What is Nanotechnology? Applied Nanotechnology, Second Edition. http://dx.doi.org/10.1016/B978-1- 4557-3189-3.00001-4

Rehm, B.H.A., (2010), Bacterial polymers: biosynthesis, modifications and applications, applied and industrial microbiology, Nature Reviews Microbiology, 8, 578– 592.

Ricketts, C.R., (1952a), Interaction of dextran and fibrinogen. Nature, 169(4310), 970-970.

Ricketts, C.R., (1952b), Dextran sulphate-a synthetic analogue of heparin. Biochemical Journal, 51(1), 129-133

Sarwat, F., Qader, S.A.U., Aman, A., Ahmed, N., (2008), Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713, International Journal of Biological Sciences, 4(6), 379–386.

Sathishkumar, M., Sneha, K., Won, S.W., Cho, C.W., Kim, S., & Yun, Y.S. (2009), Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.

Shchukin, D.G., Radtchenko, I.L., Sukhorukov, G.B., (2003), Photoinduced reduction of silver inside microscale polyelectro-lyte capsules. ChemPhysChem, 4: 1101-3.

Shevchenko, L.I., Lugovaya, Z.A., & Tolmachev, V.N., (1985), Study of the complexing properties of the dextran carboxymethyl ether with transition metal ions in solutions. Polymer Science USSR, 27(9), 2242-2247.

Slawson, R.M.; Van Dyke, M.I.; Lee, H., Trevors J.T., (1992), Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 27: 72-9.

Sondi, I., Salopek, B., (2004), Uticaj srebra na E.coli, Journal of Colloid and Interface Science, 27(5), 17-18.

Stasica, P., Rosiak, J.M., Ciach, M., Radek, M., (2000), Approach to construct hydrogel intervertebral discs implants – exper-imental and numerical investigations. Engineering of Biomaterials 3: 9-14.

Tao, K., Song, S., Ding, J., Dou, H., & Sun, K., (2011), Carbonyl groups anchoring for the water dispersibility of magnetite nanoparticles. Colloid and Polymer Science, 289(4), 361-369.

Tolmachev, V.N., Polovinkina, L.I., & Lugovaya, Z.A., (1985), Study of the acid properties of carboxymethyl dextran. Polymer Science USSR, 27(2), 273-278.

Trajković, V., Marković, Z., (2010), Nanomedicina: Stanje i perspektiva. In book: Biomaterijali. Rakovic D., Uskoković D. (eds), Institut tehničkih nauka Srpske akademije nauke i umetnosti, Beograd, 762-75.

Tseng, C.H., Wang, C.C., Chen, C.Y., (2006), Polypropylene fibers modified by plasma treatment for preparation of Ag nano-particles. Journal of Physical Chemistry B 110: 4020–9.

Vasko, P.D., Blackwell, J., & Koenig, J.L., (1971), Infrared and raman spectroscopy of carbohydrates: Part I: Identification of O-H and C-H related vibrational modes for D-glucose, maltose, cellobiose, and dextran by deuterium-substitution methods. Carbohydrate Research, 19(3), 297-310.

Wang, X.Q., Itoh, H., Naka, K., Chujo, Y., (2003), Tetrathiafulvaleneassisted formation of silver dendritic nanostructures in acetonitrile. Langmuir, 19: 6242-46.

Xiang, D.X., Chen, Q., Pang L., Zhenga, C.L., (2011), Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. Journal of Virological Methods, 178, 137–142.

Yamamoto, T., Yin, H.B., Wada, Y., Kitamura, T., Sakata, T., Mori, H., Yanagida S., (2004), Morphology-control in micro-wave-assisted synthesis of silver particles in aqueous solutions. Bulletin of the Chemical Society of Japan 77: 757-61.

Zhang, J., Chen, P., Sun, C., Hu, X., (2004), Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Applied Catalysis A: General 266: 49–54.

Zhang, L.Z,. Yu, J.C, Yip, H.Y., Li, Q., Kwong K.W., Xu A.W., Wong P.K., (2003), Ambient Light Reduction Strategy to Synthe-size Silver 316.

Zheng, X.W., Zhu, L.Y., Wang, X.J., Yan, A.H., Xie, Y., (2004), A simple mixed surfactant route for the preparation of noble metal dendrites. Journal of Crystal Growth 260: 255-62.

Zheng, X.W., Zhu, L.Y., Yan, A.H., Wang, X.J., Xie, Y., (2003), Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid Interface Science 268: 357-61.

Published

2023-03-18

How to Cite

Glišić, S., Conić, M., & Šmelcerović, M. (2023). MICROBIOLOGICAL ACTIVITY OF SILVER NANOPARTICLES STABILIZED WITH DEXTRAN DERIVATIVES. MEDIS – International Journal of Medical Sciences and Research, 2(1), 1–12. https://doi.org/10.35120/medisij020101g

Metrics